

LIFE B2E4SustWWTP (LIFE16 ENV/GR/000298)

New concept for energy self-sustainable wastewater treatment process and biosolids management

Deliverable: A.1.2 Technical report for microscreen tests

Project Funded by the European Commission under the LIFE Framework Programme. Grant Agreement LIFE16 ENV/GR/000298

Page 1 of 9

GENERAL INFORMATION

PROGRAMME	LIFE 2016
GRANT AGREEMENT NUMBER	LIFE16 ENV/GR/000298
PROJECT ACRONYM	LIFE B2E4sustainable-WWTP
DOCUMENT	A.1.2. Technical report for microscreen tests
START DATE OF THE PROJECT	1 st September 2017
END DATE OF THE PROJECT	31 st August 2020
DUE DELIVERY DATE	31/12/2017
DATE OF DELIVERY	23/12/2017
STATUS AND VERSION	Final version
ACTION RELATED	A1
ACTION RESPONSIBLE	DEVISE
AUTHOR (S)	TUC
PARTNER (S) CONTRIBUTING	All

Table of Contents

Micros	Microscreen preliminary tests4				
1.	Removal rates	4			
2.	Sludge characteristics	6			
3.	Belt speed impact on removal rates	7			
4.	Sludge quantification	9			

Microscreen preliminary tests

1. Removal rates

Preliminary tests on the microscreening treatment method were conducted by TUC in WWTP, Rethimno (DEYAR), so as to determine the removals of TSS, BOD₅ and COD achieved. In addition, TS content (%) was measured in the produced sludge, along with its VS content (% of the TS). A 350 μ m pore size openings belt was used for the tests and the maximum hydraulic load of the microscreen was 1 MGD (3785 m³/day). Experimental and laboratory analysis period was 30 days. The preliminary tests showed quite encouraging results in removals of TSS (29,2±9%), BOD₅ (14±6%), COD (16,5±6%), followed by their standard deviation, respectively. The outgoing primary sludge after microscreening found to have a dry solids content and organic volatile solids (percentage on total SS) 26-44% and 82-85% respectively. Results are presented in diagrams 1,2,3 and 4,5.

Outlet

1 TSS removal rates

Outlet

2 BOD removal rates

Inlet

3 COD removal rates

2. Sludge characteristics

Solids

4 TS-Humidity (%)

Volatile solids percent

Ash

5 VS-TS (%)

3. Belt speed impact on removal rates

Rotating belt speed of the microscreen found to have a major impact on the removals achieved. To determine and quantify that correlation, additional tests were conducted with four different belt speeds (0,6-1,05-1,5-1,95 rpm). Results showed decreased removals in higher speeds at steady incoming flow rate. Removals achieved are presented in diagrams 6,7,8. Microscreening tests would be also conducted in between the next months with different belt size pore openings so as to compare the removals achieved. Due to the nature of the technological equipment demanded, TUC was unable to carry out those tests for the time being. Flocculants-coagulants could be also used.

Outlet

7 BOD removal rate

Inlet

8 COD removal rate

4. Sludge quantification

In addition, TUC and DEYAR conducted preliminary tests to quantify the outgoing primary sludge produced by the microscreen. Sludge weight was measured both in wet and dry phase. Results are presented on table 9.

Total Incoming flow (m³)	Sludge produced (wet phase, kg)	Produced sludge/m ³	Sludge TS (%)	Sludge (dry phase, kg)	Produced sludge/m ³ (dry phase)
135	9,2	0,068	32-41	3,358	0,0248
135	10,3	0,076	32-33	3,347	0,0247
70	12,8	0,182	35-37	4,608	0,0658
60	6,3	0,105	35-37	2,268	0,0378
125	17,8	0,142	34-36	6,230	0,0498
average	11,28	0,114	-	3,962	0,0406

9 Sludge production

