

LIFE B2E4SustWWTP (LIFE16 ENV/GR/000298)

New concept for energy self-sustainable wastewater treatment process and biosolids management

Deliverable: A.1.3. Report with the characteristics of biosolids

Project Funded by the European Commission under the LIFE Framework Programme. Grant Agreement LIFE16 ENV/GR/000298

GENERAL INFORMATION

PROGRAMME	LIFE 2016
GRANT AGREEMENT NUMBER	LIFE16 ENV/GR/000298
PROJECT ACRONYM	LIFE B2E4sustainable-WWTP
DOCUMENT	A.1.3. Report with the characteristic of biosolids
START DATE OF THE PROJECT	1 st September 2017
END DATE OF THE PROJECT	31 st December 2022
DUE DELIVERY DATE	30/06/2020
DATE OF DELIVERY	30/06/2020
STATUS AND VERSION	FINAL
ACTION RELATED	A1
ACTION RESPONSIBLE	DEVISE
AUTHOR (S)	TUC
PARTNER (S) CONTRIBUTING	CETENMA, DEYAR

Table of Contents

1.	Intro	oduction	4
2.	Bios	olids characteristics	5
2	.1	Moisture – TS – VS – Elemental analysis	5
2	.2	нну	7
3.	Bios	olids quantification	8
4.	Briq	uetting tests	9
5.	Ann	ex1	10
5	.1	TUC analysis 1	10
5	.2	CETENMA analysis	1
5	.3	CERTH analysis	12

1. Introduction

TUC, CETENMA, and DEYAR have investigated the characteristics of the biosolids produced from the experimental microscreen, which is installed in WWTP of Rethymno.

In detail, the parameters which have been studied are the followings:

- Moisture content
- Total Solids (TS)
- Volatile Solids (VS)
- Elemental composition (C, H, N, S, Cl)
- Higher Heating Value (HHV)

Also, the production of biosolids per day has been measured, taking into account that the daily flowrate of the wastewater will be 5000 m³/d.

The ability of biosolids to form briquettes has been investigated by executed tests with a specified machine.

The results of the experimental measurements and calculations are analyzed within this report.

2. Biosolids characteristics

2.1 Moisture – TS – VS – Elemental analysis

TUC has of the biosolids produced from the microscreen. Also, TUC has sent samples of biosolids to CETENMA, so to have the opportunity to compare similar measurements from another laboratory.

The results regarding Moisture, TS, VS, and elemental analysis are showed in **Table 2.1.1**.

Parameter	Unit	Value	Average	Standard deviation	
		66.8			
		68.3			
		75.2		7.64	
		79.5			
Moisture	%	74.0	67.3		
		56.0			
		64.0			
		56.0			
		66.0			
		33.2			
	%	31.7		7.64	
		24.8			
		20.5			
TS		26.0	32.7		
		44.0			
		36.0			
		44.0			
		34.0			
		85.6			
		85.6			
		85.9			
VS	0/ (d b)*	85.0	04 5	1.21	
VS	% (d.b.)*	83.0	84.5	1.31	
		82.0			
		85.0			
		84.0			

Table 2.1.1. Characteristics of biosolids from TUC and CETENMA analyses.

*d.b. = dry basis

Elemental analysis

Elemental analysis					
		52.7	52.5	0.216	
С	% (d.b.)	52.2			
		52.6			
		7.2			
н	% (d.b.)	7.5	7.5	0.205	
		7.7			
	% (d.b.)	2.22		0.019	
N		2.22	2.2		
		2.18			
		0.32		0.012	
S	% (d.b.)	0.29	0.30		
		0.30			
	% (d.b.)	0.05			
Cl		0.04	0.05	0.005	
		0.05			

*d.b. = dry basis

TUC has conducted 11 measurements of the calorific value (HHV, MJ/kg) of the biosolids produced from the microscreen. Also, TUC has sent samples to CETENMA and CERTH (Centre for Research & Technology Hellas), in order to ensure the reliability of the results.

All measurements are summarized in the following **Table 2.2.1** (see ANNEX for further information).

Organization	HHV (MJ/kg)		
	22.955		
	20.285		
	19.673		
	19.692		
	20.622		
TUC	21.445		
	20.717		
	20.982		
	19.762		
	20.775		
	20.644		
Average	20.687		
Standard deviation	0.897		
	23.760		
CETENMA	23.470		
	24.400		
Average	23.877		
Standard deviation	0.388		
	22.332		
CERTH	22.329		
	21.299		
Average	21.987		
Standard deviation	0.486		

Table 2.2.1. Biosolids production (wet and dry phase) per day (5000m³ of wastewater).

Minimum	20.687
Maximum	23.877
Average	22.183
Standard deviation	1.310

3. Biosolids quantification

The production of biosolids from the microscreen has been investigated by TUC, with the assistance of DEYAR.

The results are presented at Table 3.1.

Table 3.1. Biosolids production	(wet and dry phase) per day	(5000m ³ of wastewater).
	(Het and any prices) per day	

Total incoming wastewater (m ³)	Produced biosolids (kg, wet phase)	Produced biosolids (kg, dry phase)	Produced biosolids (kg, dry phase)/m ³	Produced biosolids (kg, dry phase)/5000m ³
135	9.2	3.36	0.0249	124.37
135	10.3	3.35	0.0248	123.98
70	12.8	4.61	0.0658	329.14
60	6.3	2.27	0.0378	189.00
125	17.8	6.23	0.0498	249.20
108	18.2	6.73	0.0624	311.76
108	19.4	7.18	0.0665	332.31
190.8	34.8	12.88	0.0675	337.42
42	8.1	3.00	0.0714	356.79
66.7	12.2	4.51	0.0677	338.38
142	26.2	9.69	0.0683	341.34
		AVERAGE	0.0552	275.79

Preliminary trials with the use of coagulants have been performed (a special static mixer was used), but they did not indicate any significant increase in biosolids yield.

Tests with finer belt size pore openings and the addition of coagulants/flocculants for the prototype's microscreen will be performed during the trial testing of the pilot plant.

The manufacturer (DEVISE) will have promptly install the pilot microscreen and will have adequately prepare the site for the installation and testing with the coagulants' system. It must be noted that addition of coagulant needs a reaction vessel and special mixing arrangements.

The results of these tests will be included in the final version of Deliverable B.1.1 as recommended by EASME.

4. Briquetting tests

TUC's gasification system requires the use of briquetted biomass, so TUC executed successful tests, using biosolids generated from the experimental microscreen, to verify the ability of biosolids to form briquettes (**Figure 4.1**).

Figure 4.1. Production of well-shaped briquettes using a specified machine.

J. Annex

5.1 TUC analysis

Example with full calculations for the determination of the HHV of biosolids by TUC, using the XRY-1A Oxygen Bomb Calorimeter.

Υπολογισμοί	Συμβολισμοί	Σχόλια	
1.517	ΔT - The temperature increase of calorimeter system after correction, °C;	ΤΥΠΟΣ 2	
24.434	tn - The final temperature of main period, [°] C	Η επόμενη από την μέγιστη θερμοκρασία	
22.886	t0 - The initial temperature of main period, ^o C	Η αρχική θερμοκρασία	
-0.031380081	$\Delta \theta$ - The modified value of heat exchange between calorimeter-environment, 0 C	ΤΥΠΟΣ 3	
-0.00075	Vn - The temperature change rate in the final period, ^o C/30s	Μέσος όρος διαφορών "final period"	
-0.0045	V0 - The temperature change rate in the initial period, ^o C/30s	Μέσος όρος διαφορών "initial period"	
24.436	θn - The average temperature in the final period, [°] C	Μέσος όρος θερμοκρασιών "final period"	
22.886	θ0 - The average temperature in the initial period, ^o C	Μέσος όρος θερμοκρασιών "initial period"	
26	n - Times to record temperatures in the main period	Αριθμός μετρήσεων "main period"	
606.761	Σti - The temperature readings in sequence in the main period	Το άθροισμα των μετρήσεων "main period" χωρίς την t0	
22955.43298	Q - Calorific value of sample, J/g	ΤΥΠΟΣ 4	
41.4	ΣGd - the total heat produced by the additive, J	Θερμογόνος δύναμη (σταθερό=6000) *Μάζα σύρματος	
1.0402	G - Weight of sample, g	Μάζα δείγματος (περίπου 1g)	

$$\Delta T = (t_n - t_0) + \Delta \theta$$
TYRDE3
$$\Delta \theta = \frac{V_n - V_0}{\theta_n - \theta_0} (\frac{t_n + t_0}{2} + \sum_{1}^{n-1} t_1 - n \cdot \theta_1) + n \cdot V_1$$
TYRDE4
$$Q = \frac{E \cdot \Delta T - \Sigma (G \cdot d)}{G}$$

No	Μέτρηση (°C)	Period
0	0.000	
1	0.000	
2	0.000	
3	0.000	
4	0.000	initial (οι μετρήσεις πριν το
5	0.000	ignite)
e	0.000	
7	0.000	
8	0.000	
9		
10	22.886	
11		
12		
13	23.92	
14	24.063	
15	24.151	
16	24.215	
17	24.265	
18	24.302	
19	24.332	
20	24.353	
21	24.375	
22	24.386	main (από το ignite μέχρι
23	24.396	την μέγιστη θερμοκρασία)
24	24.409	
25	24.412	
26	24.42	
27	24.421	
28	24.431	
29	24.428	
30	24.433	
31	24.432	
32	24.438	
33	24.438	
34	24.439	
35	24.440	
36	24.434	
37	24.434	final (από την μέγιστη
38	24.438	θερμοκρασία μέχρι το
39		τέλος)
40	24.437	

5.2 CETENMA analysis

RESULTS REPORT WASTE CHARACTERIZATION

1. DESCRIPTION / SCOPE

Determination of several parameters on dried WWTP sludge (three samples). Measured parameters:

- Moisture (M)

- Total solids (TS)
- Volatile solids (VS)
- High Heating Value (HHV)
- Low Heating Value (LHV)
- Elemental composition (C,H,N,S,CI)

2. METHODOLOGY

Parameter	Method	Measures per sample
Moisture	Thermogravimetry – UNE-EN ISO 18134-1	3
Total Solids	Thermogravimetry - UNE-EN ISO 18134-1	3
Volatile Solids	Thermogravimetry - UNE-EN 14918	3
High Heating Value	Calorimetry – LECO AC500 - UNE 164001:2005 EX	2
Low Heating Value	Calculated from HHV and (C,H,N) - UNE 164001:2005 EX	1
Elemental Composition		1
- C, H, N	LECO 628 - UNE-EN ISO 16948	1
 - S, Cl 	UNE-EN ISO 16994	1

3. RESULTS

Parameter	Unit	Sample 1	Sample 2	Sample 3	Mean
M	%	2.29	2.02	2.08	2.13
TS	%	97.71	97.98	97.93	97.87
VS	% (w.b.)	83.65	83.85	84.09	83.86
SV/ST	96	85.6	85.6	85.9	85.7
HHV	kcal/kg (d.b.)	5675	5606	5828	5703
HHV	kcal/kg (w.b.)	5661	5594	5816	5690
С	% (d.b.)	52.7	52.2	52.6	52.5
Н	% (d.b.)	7.2	7.5	7.7	7.5
N	% (d.b.)	2.22	2.22	2.18	2.2
5	% (d.b.)	0.32	0.29	0.30	0.30
CI	% (d.b.)	0.05	0.04	0.05	0,05
LHV	kcal/kg (d.b.)	5288	5203	5414	5302
LHV	kcal/kg (w.b.)	5256	5175	5386	5272

w.b. - Wet basis

d.b. – Dry basis

M, TS, VS, HHV (d.b.), C, H, N, S and Cl are measured HHV (w.b.), LHV (d.b.) and LHV (w.b.) are calculated

5.3 CERTH analysis

ΕΘΝΙΚΌ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΝΑΠΤΥΞΗΣ (Ε.Κ.Ε.Τ.Α.) ΙΝΣΤΙΤΟΥΤΟ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ (Ι.Δ.Ε.Π.)

δο χλμ. Οδού Χαριλάου-Θέρμης, Τ.Θ. 361, 57001 Θέρμη, Θεσσαλονίκη. τηλ. 2310 498 300 FAX 2310 498 380

Ημερ. Έκδοσης έκθεσης : 16/5/19

Ар. Прωток. : 39

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ

 ΚΩΔΙΚΟΣ ΔΕΙΓΜΑΤΟΣ :
 262096

 ΟΝΟΜΑΣΙΑ ΕΠΙΣΗΜΑΝΣΗ :
 Sample _1

ANAAYEH: CALORIFIC_VALUE	Gross Heat of Combustion MJ/Kg		
ΣΤΟΙΧΕΙΑ ΑΝΑΛΥΣΗΣ	ΑΠΟΤΕΛΕΣΜΑ	ΜΟΝΑΔΕΣ	ΑΠΑΙΤΗΣΗ ΔΟΚΙΜΗΣ
Gross Heat of combustion	22.3323	MJ/Kg	ASTM D 4809
OPERATOR	Maria Miltsi		ASTM D 4809

Ημερ. Έκδοσης έκθεσης : 16/5/19		Ар. Прыток. : 39				
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ						
ΚΩΔΙΚΟΣ ΔΕΙΓΜΑΤΟΣ : 262097 ΟΝΟΜΑΣΙΑ ΕΠΙΣΗΜΑΝΣΗ : Sample _2						
ANAAYEH: CALORIFIC_VALUE	Gross Heat of Combustion MJ/Kg					
ΣΤΟΙΧΕΙΑ ΑΝΑΛΥΣΗΣ	ΑΠΟΤΕΛΕΣΜΑ	ΜΟΝΑΔΕΣ	ΑΠΑΙΤΗΣΗ ΔΟΚΙΜΗΣ			
Gross Heat of combustion	22.329	MJ/Kg	ASTM D 4809			
OPERATOR	Maria Miltsi		ASTM D 4809			

Ημερ. Έκδοσης έκθεσης : 16/5/19		Ар. Прыток. : 39				
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ						
ΚΩΔΙΚΟΣ ΔΕΙΓΜΑΤΟΣ : 262098 ΟΝΟΜΑΣΙΑ ΕΠΙΣΗΜΑΝΣΗ : Sample _3						
ANAAYEH: CALORIFIC_VALUE	Gross Heat of Combustion MJ/Kg					
ΣΤΟΙΧΕΙΑ ΑΝΑΛΥΣΗΣ	ΑΠΟΤΕΛΕΣΜΑ	ΜΟΝΑΔΕΣ	ΑΠΑΙΤΗΣΗ ΔΟΚΙΜΗΣ			
Gross Heat of combustion	21.2997	MJ/Kg	ASTM D 4809			
OPERATOR	Maria Miltsi		ASTM D 4809			

